02-WordCount

准备工作

  • hadoop集群环境安装
  • intellij idea 开发工具

功能描述

  • 直接在集群中提交(idea 是在集群中的节点开发)
  • 用hadoop 进行文件中单词出现的次数进行统计,单词之间用空格分开
  • 数据文件data wordCount.txt

Hadoop Scala Scala Spark
Spark Hadoop Scala
Hello

wordCount2.txt

Hello Spark Java Eclipse Subline You
English Eclipse Subline
Intellij Hello

  • 源码
    package com.opensourceteams.modeles.common.bigdata.hadoop.hadoop2.mapreduce.wordcount;   
    import java.io.IOException;
    import java.util.StringTokenizer;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;

    public class WordCount {


         public static class TokenizerMapper 
         extends Mapper<Object, Text, Text, IntWritable>{

      private final static IntWritable one = new IntWritable(1);
      private Text word = new Text();

      public void map(Object key, Text value, Context context
                      ) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
          word.set(itr.nextToken());
          context.write(word, one);
        }
      }
    }

    public static class IntSumReducer 
         extends Reducer<Text,IntWritable,Text,IntWritable> {
      private IntWritable result = new IntWritable();

      public void reduce(Text key, Iterable<IntWritable> values, 
                         Context context
                         ) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
          sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
      }
    }

    public static void main(String[] args) throws Exception {

        if(args == null || args.length ==0){
            args = new String[2];
            args[0] = "hdfs://s0:9000/library/wordcount/input/Data";
            args[1] = "hdfs://s0:9000/library/wordcount/output/wordcount_jar_27";
        }

      Configuration conf = new Configuration();
      String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
      if (otherArgs.length < 2) {
        System.err.println("Usage: wordcount <in> [<in>...] <out>");
        System.exit(2);
      }
      Job job = Job.getInstance(conf, "word count");
      job.setJarByClass(WordCount.class);
      job.setMapperClass(TokenizerMapper.class);
      job.setCombinerClass(IntSumReducer.class);
      job.setReducerClass(IntSumReducer.class);
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(IntWritable.class);
      for (int i = 0; i < otherArgs.length - 1; ++i) {
        FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
      }
      FileOutputFormat.setOutputPath(job,
        new Path(otherArgs[otherArgs.length - 1]));
      System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    }